翻訳と辞書
Words near each other
・ Principal Chiefs of the Cherokee
・ Principal city
・ Principal Clerk of Session and Justiciary
・ Principal clock
・ Principal component analysis
・ Principal component regression
・ Principal curvature
・ Principal curvature-based region detector
・ Principal dancer
・ Princeton Municipal Airport (Maine)
・ Princeton Municipal Airport (Minnesota)
・ Princeton Nassoons
・ Princeton Neuroscience Institute
・ Princeton Newport Partners
・ Princeton North, New Jersey
Princeton ocean model
・ Princeton offense
・ Princeton Owusu-Ansah
・ Princeton Packet
・ Princeton Painter
・ Princeton Papyri
・ Princeton Plasma Physics Laboratory
・ Princeton Posse
・ Princeton Principles
・ Princeton Prize in Race Relations
・ Princeton Project
・ Princeton Project 55
・ Princeton Public Library
・ Princeton Public Library, Illinois
・ Princeton Public Schools


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Princeton ocean model : ウィキペディア英語版
Princeton ocean model

The Princeton ocean model (POM) is a community general numerical model for ocean circulation that can be used to simulate and predict oceanic currents, temperatures, salinities and other water properties.
==Development==
The model code (see POM web, ()) was originally developed at Princeton University (G. Mellor and Alan Blumberg) in collaboration with Dynalysis of Princeton (H. James Herring, Richard C. Patchen). The model incorporates the Mellor–Yamada turbulence scheme developed in the early 1970s by George Mellor and Ted Yamada; this turbulence sub-model is widely used by oceanic and atmospheric models. At the time, early computer ocean models such as the Bryan–Cox model (developed in the late 1960s at the Geophysical Fluid Dynamics Laboratory, GFDL, and later became the modular ocean model, MOM)), were aimed mostly at coarse-resolution simulations of the large-scale ocean circulation, so there was a need for a numerical model that can handle high-resolution coastal ocean processes. The Blumberg–Mellor 〔Blumberg, A. F. and G. L. Mellor, A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal ocean Models, edited by N. Heaps, 208 pp., American Geophysical Union., 1987〕 model (which later became POM) thus included new features such as free surface to handle tides, sigma vertical coordinates (i.e., terrain-following) to handle complex topographies and shallow regions, a curvilinear grid to better handle coastlines, and a turbulence scheme to handle vertical mixing. At the early 1980s the model was used primarily to simulate estuaries such as the Hudson–Raritan Estuary (by Leo Oey) and the Delaware Bay (Boris Galperin), but also first attempts to use a sigma coordinate model for basin-scale problems have started with the coarse resolution model of the Gulf of Mexico (Blumberg and Mellor) and models of the Arctic Ocean (with the inclusion of ice-ocean coupling by Lakshmi Kantha and Sirpa Hakkinen).
In the early 1990s when the web and browsers started to be developed, POM became one of the first ocean model codes that were provided free of charge to users through the web. The establishment of the POM users group and its web support (by Tal Ezer) resulted in a continuous increase in the number of POM users which grew from about a dozen U.S. users in the 1980s to over 1000 users in 2000 and over 4000 users by 2009; there are users from over 70 different countries. In the 1990s the usage of POM expands to simulations of the Mediterranean Sea (Zavatarelli〔Zavatarelli, M. and G. L. Mellor, A numerical study of the Mediterranean Sea circulation. J. Phys. Oceanogr., Vol. 25, No. 6, Part II, 1384-1414, 1995〕) and the first simulations with a sigma coordinate model of the entire Atlantic Ocean〔Ezer, T. and G. L. Mellor, Simulations of the Atlantic Ocean with a free surface sigma coordinate ocean model. J. Geophys. Res., 102(C7), 15,647-15,657, 1997.〕 for climate research (Ezer). The development of the Mellor–Ezer optimal interpolation data assimilation scheme〔Mellor, G. L. and T. Ezer, A Gulf Stream model and an altimetry assimilation scheme, J. Geophys. Res, 96, 8779-8795, 1991.〕 that projects surface satellite data into deep layers allows the construction of the first ocean forecast systems for the Gulf Stream 〔Ezer, T. and G. L. Mellor, A numerical study of the variability and the separation of the Gulf Stream, induced by surface atmospheric forcing and lateral boundary flows. J. Phys. Oceanogr., 22, 660-682, 1992〕 and the U.S. east coast running operationally at the NOAA's National Weather Service (Frank Aikman and others〔Aikman, F., G. L. Mellor, T. Ezer, D. Shenin, P. Chen, L. Breaker, and D. B. Rao, Toward an operational nowcast/forecast system for the U.S. east coast, In: Modern Approaches to Data Assimilation in Ocean Modeling, P. Malanotte-Rizzoli Ed., Elsevier Oceanog. Ser., 61, 347-376, 1996.〕). Operational forecast system for other regions such as the Great Lakes, the Gulf of Mexico (Oey), the Gulf of Maine (Huijie Xue) and the Hudson River (Blumberg) followed.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Princeton ocean model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.